
Temperature-amplitude spectrum for early full-field
vibration-fatigue-crack identification

Martin Česnika, Janko Slaviča,∗

aUniversity of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana,
Slovenia

Cite as:
Martin Česnik and Janko Slavič, "Temperature-amplitude spectrum for early full-field

vibration-fatigue-crack identification," International Journal of Mechanical Sciences 286
(2025) 109829. doi. org/ 10. 1016/ j. ijmecsci. 2024. 109829 .

Abstract

A dynamic structure under vibration loading within its natural frequency

range can experience failure due to vibration fatigue. Understanding the causes

of such failure requires pinpointing the initiation time and location of fatigue

cracks, tracking their propagation, and identifying the frequency range of crit-

ical stress responses. This research introduces a novel, thermoelasticity-based

method – the Temperature-Amplitude Spectrum (TAS) method – for early-

stage, full-field, and non-contact crack detection that operates during uninter-

rupted vibration testing. This method leverages high-speed infrared imaging to

analyze the specimen’s temperature-amplitude spectrum, capturing comprehen-

sive crack-related information, including initiation and propagation, in real time.

Experimentally validated on both 3D-printed polymer and aluminum specimens,

the TAS method accurately identified crack locations and paths without com-

plex adjustments to the experimental setup or data processing. This new ap-

proach advances vibration-fatigue testing by enabling reliable, high-resolution

crack detection and analysis while remaining computationally efficient.
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1. Introduction1

Vibration fatigue is recognized as one of the most common failure mecha-2

nisms encountered during environmental vibration testing [1–3]. Over the past3

decade, this field has garnered significant attention within the scientific com-4

munity. As a result, vibration fatigue analysis has evolved beyond stationary5

Gaussian excitation and uniaxial stress conditions [4]. Current approaches now6

incorporate non-Gaussian [5–10], non-stationary [11–13], and multi-axis excita-7

tions [14, 15], along with their respective stress responses [16–19]. Additionally,8

these studies now consider nonlinear dynamic systems [20–22]. Beyond evalua-9

tion and control across a broader range of signal types [23–25], recent research10

has explored the influence of material properties on vibration fatigue. This in-11

cludes investigations into single-crystal superalloys [26] and various 3D-printed12

metals [27] and polymers [28, 29], which can also exhibit frequency-dependent13

fatigue parameters [30].14

Vibration fatigue is commonly estimated using spectral methods [31]. How-15

ever, despite the accuracy of these methods, experimental vibration tests on16

actual structures remain necessary, as certain vibration loads can still lead to17

structural vibration-fatigue failure [32]. In such instances, key information for18
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enhancing a structure’s vibration resilience includes the crack initiation time, lo-19

cation, severity, and the critical excitation/response frequency. Since vibration20

testing applies a high load rate to the structure, any interruptions for dam-21

age inspection can significantly extend the testing duration [33]. Additionally,22

inspecting for potential cracks typically requires dismounting, inspecting, and23

remounting the structure, potentially altering its boundary conditions. There-24

fore, to maximize insights gained from vibration tests that result in fatigue25

failure, it is essential to employ a real-time, non-intrusive, non-contact, and26

full-field method for detecting damage.27

Monitoring vibration fatigue can be accomplished using methods such as28

vibration-based approaches [34, 35], digital image correlation (DIC) [36], and29

thermography [37]. Starting with vibration-based methods: crack detection30

typically involves observing changes in modal parameters [38] by evaluating31

frequency-response functions. For example, Janeliukstis et al. [39] demonstrated32

the effectiveness of the modeshape-curvature square method for crack localiza-33

tion. Gupta and Das [40] further enhanced this approach’s accuracy by applying34

a neural network trained with numerical models to extract error-free frequency-35

response data. For complex structures, the modal-strain-energy-index method36

has shown high localization accuracy, as numerically shown by Zhang et al. [41].37

Bao et al. [42] also demonstrated precise localization using a multiple signal clas-38

sification (MUSIC) algorithm with the guided-wave method, highlighting early39

crack detection and full-field observations. Although vibration-based methods40

offer reliable crack detection, localization, and near-real-time monitoring, they41

are somewhat limited in versatility, constraining their applicability across vari-42

ous products.43

Conversely, the DIC method provides more flexibility and true full-field ob-44

servation. Risbet et al. [43] showed that DIC could detect small strains under45

cyclic fatigue loading as early as 2010. Later, Kovarik [44] demonstrated DIC’s46

capability in damage detection by monitoring strain fields during vibration tests47
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using low-speed cameras with a lock-in approach. Recently, Sun et al. [45] em-48

ployed a high-speed camera to detect damage at high load-cycle rates, as seen in49

vibration fatigue. Zanarini [46] used DIC to obtain full-field frequency-response50

functions to establish defect acceptance criteria. However, DIC has two main51

drawbacks. First, obtaining strain requires double spatial differentiation, which52

increases noise levels [47]. Second, the high computational demand for DIC,53

particularly at high spatial resolutions, can be a limitation. These drawbacks54

are typically not present in thermographic approaches.55

Thermographic damage assessment using infrared (IR) imaging is a well-56

established [48], non-contact technique with extensive applications, often ap-57

plied in combination with thermoelastic stress analysis (TSA). D’Accardi et al.58

[49] presented conductive-thermography technique for non-destructive crack de-59

tection. Additionally, Zhu et al. [50] and Bercelli et al. [51, 52] applied infrared60

thermography to assess fatigue crack growth in metals, exploring the effects61

of heat treatments and stress ratios on crack propagation and closure. Mean-62

while, Ricotta and Meneghetti [53], Amjad et al. [54], and Middleton et al. [55]63

explored real-time, energy-based, and cost-effective thermographic monitoring64

systems, emphasizing practical applications for detecting fatigue in materials65

and large-scale structures. Thermoelastic approach is widely used for assess-66

ing the Paris’ law [56], detecting damage in composite materials [57–59] and67

for analyzing structural damping [60–62], though it has limitations when large68

displacements are involved [63].69

Regardless, thermographic damage assessment continues to gain research in-70

terest, especially for high-rate loading conditions. Wei et al. [64] introduced a71

vibro-thermography method that uses an IR camera to identify fatigue cracks72

in specimens excited by a piezoelectric transducer in the ultrasonic range. Re-73

cently, Cai et al. [65] developed a method for monitoring fatigue damage in74

steel specimens during vibration testing, using a low-speed IR camera to ob-75

serve heat generated by the specimen’s resonant response at approximately 20076
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Hz. When subjected to vibration loads, temperature changes occur at faster77

rates, requiring high-speed IR imaging for accurate monitoring. For instance,78

Capponi et al. [66] estimated fatigue damage in a Y-shaped specimen under79

random-signal multi-axial excitation, while Zaletelj et al. [47] applied the ther-80

moelastic principle to identify strain modeshapes in metal beams, capturing IR81

data at 5000 frames per second. Recently, Šonc et al. [67] showed that ther-82

moelasicity principle can also be used as a criterion for vibration fatigue under83

multiaxial loading.84

Building on these advancements, the thermoelasticity approach presents a85

promising non-contact and non-invasive method for crack detection during vi-86

bration fatigue. This study addresses this potential by introducing a temperature-87

amplitude-spectrum (TAS) method for early crack detection using high-speed88

IR imaging. The TAS method is non-contact, computationally efficient, and89

non-intrusive, facilitating continuous, accurate, and early crack detection dur-90

ing vibration fatigue testing without interrupting the process.91

This manuscript is structured as follows. Section 2 provides an overview of92

the physical principles underlying structural dynamics, vibration fatigue, and93

thermoelasticity. The novel TAS method for identifying vibration-fatigue cracks94

is introduced in Section 3. Section 4 details the experimental setup, testing95

procedure, and the range of specimens used. In Section 5, the results of crack96

identification using the TAS method are presented for aluminum and 3D-printed97

polymer specimens. Finally, conclusions are discussed in Section 6.98

2. Theoretical background99

This section initially presents the fundamental principles governing vibra-100

tion fatigue in the context of kinematic (base) excitation [68]. Following this, a101

correlation is established between the structure’s stress response and its temper-102

ature field, offering real-time insights into the structural condition as observed103

through infrared (IR) imaging.104
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2.1. Vibration fatigue of base-excited structures105

Vibration fatigue arises when the frequency spectrum of the excitation aligns106

with the natural frequencies of the structure. If the real dynamic structure can107

be assumed to be linear and can be discretized to an N -degrees-of-freedom sys-108

tem, its governing equations of motion in the case of kinematic (base) excitation109

are formulated as [68]:110

M z̈ + iD z +K z = −M b ÿ, (1)

where ÿ represents the acceleration of the base, z denotes the vector of relative111

displacements between the structure and the base, and b indicates the direc-112

tional vector linking the structure’s generalized coordinates with the direction113

of the base movement. M,D and K are the mass, damping and stiffness matri-114

ces, respectively. In Eq. (1), hysteretic damping is assumed.115

116

Solving the eigenvalue problem on the left-hand side of Eq. (1) yields the117

structure’s natural frequencies, ωr, damping ratios, ηr, and a modal matrix,118

Φ [69]. The matrix Φ consists of N mass-normalized modeshapes, ϕr =119

[ϕr,1 ϕr,2 · · · ϕr,N ]. Next, a vector of mode-participation factors Γ = ΦT M b120

[70] is introduced. Based on the linear relationship between the displacement121

modeshapes ϕr, strain modeshapes εϕr and stress modeshapes σϕr [71, 72], the122

stress response at the k-th stress degree-of-freedom can be expressed as [28]:123

σk(ω) =

N∑
r=1

Γr σϕr,k

ω2
r − ω2 + i ηr ω2

r

ÿ(ω) = Hσÿ,k(ω) ÿ(ω). (2)

In Eq. (2), Hσÿ,k(ω) represents the structure’s transmissibility, describing the124

influence of the base kinematics ÿ(ω) on the stress response σk(ω) within the125

structure. Given the known power spectral density (PSD) [73] of the excitation,126

Gÿÿ(ω), the stress response at the k-th stress degree-of-freedom can be written127

as:128

Gσσ,k(ω) = |Hσÿ,k(ω)|2 Gÿÿ(ω). (3)
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From the perspective of vibration fatigue, dynamic structures accumulate129

damage due to their dynamic stress responses. The impact of a material’s fatigue130

characteristics is quantified using Basquin’s equation, σ = Sf N
b [74], where Sf131

denotes fatigue strength and b represents the fatigue exponent. Typically, the132

linear damage accumulation rule is applied, where the damage D of a single133

stress-load cycle is defined as D = 1/N(σ). On a macro scale, structural failure134

is recognized when D = 1. To estimate the damage accumulation rate d in135

the fatigue zone of a dynamically excited structure, various frequency counting136

methods can be applied [31]. When a single, distinct modeshape is excited, the137

narrowband method provides reliable results, even with its simplicity [73]:138

dNB =

(√
2m0

)k
2π C

√
m2

m0
Γ

(
1 +

k

2

)
, (4)

where k = −1/b, C = S
−1/b
f , Γ denotes the Gamma function and m0, m2 are139

the moments of the one-sided stress-response PSD Gσσ,k(ω) (Eq. (3)).140

2.2. Thermoelasticity principle141

The principle of thermoelasticity is founded on the interaction between a142

solid structure’s mechanical and thermodynamic responses. This principle ap-143

plies the fundamental laws of continuum mechanics alongside the first and sec-144

ond laws of thermodynamics. Assuming a fully reversible adiabatic process,145

the governing equation of thermoelasticity, which relates the stress field to the146

temperature field, is expressed as follows [75, 76]:147

ρCσ
Ṫ

T
= −

[
α+

(
ν

E2

∂E

∂T
− 1

E

∂ν

∂T

)
s

]
ṡ+

(
(1 + ν)

E2

∂E

∂T
− 1

E

∂ν

∂T

)
σp σ̇p,

(5)

where ρ denotes the density, Cσ is the specific heat at constant stress, and148

T is the absolute temperature. Additionally, α denotes the coefficient of linear149

expansion, E is Young’s modulus, ν is Poisson’s ratio, σp is the principal stress150

tensor, and s is the first stress invariant.151
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In a uniaxial stress field, where s = σ1 and σ2 = σ3 = 0, Eq. (5) simplifies152

to:153

ρCσ
Ṫ

T
= −

(
α− 1

E2

∂E

∂T
σ1

)
σ̇1. (6)

If the principal stress load is sinusoidal, expressed as σ1(t) = σ1,m+σ1,a sin(ω t),154

the linearized solution of Eq. (6) about the reference temperature T0 becomes155

[77]:156

ρCσ

T0
∆T (t) = −

(
α+

1

E2

∂E

∂T
σ1,m

)
σ1,a sin(ω t) +

1

4E2

∂E

∂T
σ2
1,a cos(2ωt). (7)

Under the assumption of an adiabatic process, the temperature within the157

observed control volume – subjected to harmonic stress excitation – oscillates158

with both the fundamental excitation frequency ω and its second harmonic 2ω.159

For high-cycle fatigue conditions, resulting from the structure’s dynamic re-160

sponse, the observed temperature range T remains narrow. In this scenario,161

variations in Young’s modulus with respect to temperature ∂E/∂T are negligi-162

ble. Consequently, Eq. (7) simplifies to:163

∆T (t) = −αT0

ρCσ
σ1,a sin(ω t) = Km σ1,a sin(ω t), (8)

where Km = −(αT0)/(ρCσ) is the thermoelastic coefficient [75]. The rela-164

tionship between stress response and temperature at the observed location can165

be generalized as ∆T (t) = Kmσ(t) when the dynamic structure is excited in a166

single, well-separated mode shape, due to the narrow-band nature of the stress167

response (Eq. (2)).168

In applying the thermoelasticity principle to the identification and quantifica-169

tion of fatigue cracks, the adiabatic condition can be assumed to hold across the170

entire observed (visible) surface, provided the observation times are sufficiently171

short.172
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As a fatigue crack develops and penetrates the material, the stresses on the173

observed surface near the crack are reduced, leading to an absence of tempera-174

ture variations due to the thermoelastic effect , see Fig. 1. However, temperature175

fluctuations still occur at the crack tip. At this stage, the temperature distri-176

bution near the crack is governed by the heat-diffusion equation:177

∂T

∂t
=

k

ρCσ

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
, (9)

where k is the thermal conductivity.178

3. Temperature-amplitude-spectrum (TAS) method179

This section introduces the TAS method for early, full-field crack identi-180

fication in structures experiencing vibration fatigue. This approach relies on181

capturing the complete temperature field across the surface within the fatigue182

zone, using a sampling frequency that significantly exceeds the structure’s nat-183

ural frequency.184

The main concept of this methodology is illustrated in Fig. 1 and described185

as follows. According to Eq. (3), when a dynamic structure is excited by a186

random wide-band signal, it exhibits amplified stress-response amplitudes at its187

natural frequencies (see Fig. 1, left). Based on thermoelasticity theory (Eq. (8)),188

the temperature response on the structure’s surface mirrors the stress response,189

scaled by a thermoelastic constant. Consequently, a specific natural frequency190

and its associated stress modeshape can be isolated within the fatigue zone.191

During broad-band excitation, the stress response near a natural frequency192

appears as a narrowband signal [73]. The TAS method, which employs an in-193

frared (IR) camera, provides a full-field approach that captures spatial informa-194

tion across the surface. As shown in Fig. 1, the stress near the crack diminishes,195

as maximum stress propagates with the crack tip into the structure. This reduc-196

tion is also evident in the lowered maximum value of the temperature-amplitude197
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spectrum, obtained through a fast Fourier transform [78]. The concept is fur-198

ther illustrated in Fig. 1.199

200

Figure 1: Crack detection concept: the temperature signal during the vibration test due to

the thermoelastic effect and its changes in the presence of a crack.

In the following, the concept described above is generalized. Consider a201

measured temperature time series for the i-th pixel, represented as Ti(tn) =202

Ti(n · ∆t), where n = 0, . . . , N − 1. Here, ∆t denotes the time step between203

sequential frames, and N is the total length of the time series Ti, i. e. the number204

of frames in the observed recording. Given the temperature time series Ti(tn)205

for the i-th pixel, the temperature-amplitude spectrum T̂i(ω) can be obtained206

using a discrete Fourier transform [73], expressed as T̂i(ωk) = |DFT (Ti(tn))|,207

where ωk = k ·∆ω, k = 0, . . . , N − 1, and ∆ω = 2π/(N∆t). The temperature-208

amplitude spectrum (TAS) for the i-th pixel is defined as:209

T̂i,AS = max(T̂i(ωk)), where ωk ∈ (ωmin, ωmax), (10)

where ωmin and ωmax denote the frequency range of excitation PSD Gÿÿ(ω).210

Two conditions must be satisfied for accurate analysis. First, the structure’s211

critical natural frequency ωr should fall within the excitation frequency range212

(ωmin, ωmax). Second, the sampling frequency fs = 1/∆t must be high enough213
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to ensure the Nyquist frequency fs/2 exceeds ωmax/2π. It is important to note214

that the frequency of maximum magnitude may vary across different pixels;215

however, these peak frequencies are generally expected to cluster around the216

structure’s critical natural frequency. The definition of the estimator T̂i,AS in217

Eq. (10) highlights the computational efficiency of the TAS method. Despite its218

simplicity, this method provides robust crack detection capabilities, as demon-219

strated in the experimental results in Sec. 5).220

221

To compare the TAS method with the conventional thermography approach,222

which employs low-frame-rate infrared (IR) imaging, this study introduces an223

alternative image-processing technique. Due to the long exposure times asso-224

ciated with low-frame-rate imaging [65, 66], the temperature time series of the225

i-th pixel is compressed into an average temperature estimator:226

Ti,TG =
1

N

N∑
n=1

Ti(tn). (11)

In this study, this approach is referred to as the "Thermography method".227

4. Experimental research228

The experimental framework developed to demonstrate the feasibility of the229

TAS method is outlined as follows. First, the design of the test specimens and230

the configuration of the experimental setup are described in detail. This is231

followed by a discussion of the variations among the tested specimens. Finally,232

preliminary experimental results are presented to provide an initial assessment233

of the effectiveness of the TAS method.234

4.1. Experimental setup235

The experimental setup follows a standard approach for vibration testing236

using an electrodynamic shaker, with the addition of a high-speed IR camera237

for enhanced measurement capabilities, as illustrated in Fig. 3a). The design of238
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the specimens, adapted from [28] and detailed in Fig. 2(a) consists of a fixation239

areas, a notch area and an inertial mass. With a proposed simple design it is240

possible to achieve well-separated mode shape, a tuneable natural frequency,241

and an accessible fatigue zone (Fig. 2(b)) with a near-uniaxial stress field. To242

confirm the applicability of TAS methodology, the specimens were produced243

from PLA by 3D printing and from aluminum by conventional machining. The244

specimens were mounted to the shaker’s armature with an M6 bolt and a 3-mm-245

thick aluminum plate. Additionally, to allow free movement of the specimen, the246

lower fixation surface was shimmed with a 3-mm aluminum plate, as depicted247

in Fig. 3b). For conducting vibration-fatigue tests the base excitation is defined248

by an acceleration random-signal PSD profile Gÿÿ(ω), Eq. (3). An LDS V555249

electrodynamic shaker was used, and the PSD acceleration profiles were flat-250

shaped (Fig. 1) with adjustable amplitude and frequency ranges. To monitor251

the specimen’s response, a response accelerometer was employed, as shown in252

Fig. 3b).253

For high-speed infrared (IR) imaging, a Telops FAST m3K camera was used.254

The camera has a specified Noise Equivalent Temperature Difference (NETD)255

of 32 mK; however, as demonstrated by Zaletelj et. al [47], significantly lower256

noise levels can be achieved through optimized signal processing in the frequency257

domain. The IR camera was fitted with a Telops 1X microscopic lens with a258

fixed focal distance of 26 cm. The experimental setup and its implementation259

are shown in Fig. 3.260

4.2. Specimen overview and testing conditions261

Two types of specimens were evaluated: the 3D-printed polylactic-acid (PLA)262

specimens and aluminum specimens. The 3D-printed PLA specimens were pro-263

duced in two orientations (x and y, see Fig. 2) with an inertial mass length of264

L = 24 mm. These specimens were fabricated using a Prusa i3 MK3S+ 3D265

printer with a 0.4-mm nozzle diameter, a nozzle temperature of 215◦C, and266
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Figure 2: Specimen design; (a) specimen geometry with adopted coordinate system, (b) man-

ufacutured specimen with denoted observed fatigue zone, (c) zoomed-in fatigue zone for spec-

imen 3D-printed in y direction and (d) in x direction.

Figure 3: Experimental setup; (a) a schematic representation with an electrodynamic shaker,

mounted specimen and a high-speed IR camera, (b) an actual setup.
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No. Material L [mm] Print direction Surface preparation

1 PLA 24 y /

2 PLA 24 x /

3 Aluminum 40 /
Fine ground,

black color spray coating

4 Aluminum 40 / /

Table 1: Overview of the tested specimens.

varying printing speeds: 25 mm/s for the external perimeter, 45 mm/s for the267

internal perimeter, and 80 mm/s for infill. No additional surface preparation268

was applied to the 3D-printed specimens. Fig. 2(b) a 3D-printed specimen with269

a denoted area of observation during vibration testing; an enlarged view of the270

observed area is given in Figs. 2(c) and 2(d) for 3D printing in y and in x di-271

rection, respectively. The aluminum specimens were manufactured from 6026272

aluminum alloy using water-jet cutting, with an inertial mass length of L = 40273

mm. These specimens underwent additional surface post-processing, including274

fine grinding and painting with black spray to enhance IR imaging contrast. A275

summary of the specimen types and specifications is provided in Tab. 1.276

To determine the PSD acceleration profile parameters for each test spec-277

imen, two main guidelines were followed: first, the natural frequency of the278

specimen needed to be continuously excited throughout the test; second, com-279

plete fatigue failure was expected to occur within 10 to 30 minutes from the280

start of the vibration test. The first natural frequencies of the undamaged spec-281

imens, along with the specific testing conditions for each, are provided in Tab. 2.282

283

The high-speed camera captured IR images at a rate of 2400 frames per284

second, with a spatial resolution of 320×265 pixels, covering a surface area285

of 10.0×8.3 mm2. IR imaging was automatically triggered at constant time286

intervals, capturing 1200 frames per trigger, resulting in a recorded duration of287
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No. f1 [Hz] Excited freq. range [Hz] PSD level [(m/s2)2/Hz]

1 226 [150, 400] 0.4

2 248 [150, 350] 2.0

3 505 [450, 550] 5.4

4 530 [450, 550] 4.0

Table 2: Specimens’ natural frequencies and testing conditions.

0.5 seconds per interval. The control and response accelerometers sampled data288

at a frequency of 25.6 kHz, with a 10-second averaging period applied to obtain289

the specimen’s frequency-response function.290

4.3. Experimental results and IR image processing291

According to thermoelasticity theory (Sec. 2), the temperature response of292

the specimen in the fatigue zone is primarily governed by the stress-response293

frequency. For the tested specimens, and as indicated in Eqs. (2) and (3), this294

frequency corresponds to the specimen’s first natural frequency. The temper-295

ature response of specimen no. 1, both in the time and frequency domains, is296

shown in Figs. 4(a) and 4(b) after 100 seconds of vibration testing. The mea-297

sured temperature data refer to pixel no. 45267, marked in Fig. 4(c) as the pixel298

with the highest Ti,TG value within the 0.5-second recording interval. The pre-299

liminary measurement of specimen no. 1’s natural frequency (Tab. 1) demon-300

strates that the observed temperature response, specifically the temperature-301

amplitude spectrum displayed in Fig. 4(b), aligns with the analytically predicted302

response outlined in Eq. (8). Furthermore, the temperature-amplitude spectrum303

in Fig. 4(b) shows no peak at the second harmonic of the specimen’s natural304

frequency, 2 · f1. This observation supports the assumption of ∂E/∂T = 0 in305

Eq. (7).306

307

The temperature-amplitude spectrum in Fig. 4(b) shows noise within the308
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frequency range of the highest magnitudes. To address this, Welch’s averaging309

was applied to the temperature signals, following the method outlined in [66],310

which enhances the signal-to-noise ratio in the frequency domain [79]. While311

this approach improved the noise profile, it did not significantly enhance the312

accuracy of crack identification. Therefore, to reduce the computational cost313

associated with the TAS method, a non-averaged amplitude spectrum approach314

was ultimately adopted.315

316

By calculating the TAS values as in Eq. (10) or ’Thermography’ mean values317

as in Eq. (11), a single representative value per pixel can be obtained for each318

recording. These pixel values can then be visualized as a heat map, providing319

a graphical representation of the entire recording. Figs. 4(c) and 4(d) show the320

heatmaps of specimen no. 1 after 100 seconds of vibration testing, comparing the321

TAS method with the Thermography method. The TAS method clearly offers322

a more detailed visualization of the specimen’s surface. In generating Fig. 4(d)323

the amplitude spectra values were extracted around a frequency of 225 Hz.324

325

A response accelerometer was attached to the inertial mass of each specimen326

to monitor its frequency-response function during vibration-fatigue testing. By327

applying the least-squares complex-frequency-domain (LSCF) method [80] to328

the measured frequency-response data, precise information on changes (i.e., de-329

creases) in the specimen’s natural frequency and damping over the course of the330

vibration test was obtained. Consequently, the TAS method should also capture331

these shifts in the specimen’s natural frequency. This prediction was validated332

in the present study, as illustrated in Fig. 5, where the mean frequency of the333

pixels’ T̂i,AS values is shown alongside the natural frequency values derived from334

the response accelerometer. Fig. 5 further indicates that aluminum specimens335

exhibit a lower scatter in the averaged frequency of maximal response compared336

to polymer specimens. This reduced scatter may be partially due to the higher337
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Figure 4: Temperature response of the specimen no. 1; (a) time waveform for pixel no. 45267,

(b) amplitude spectrum for pixel no. 45267, (c) heatmap of observed area obtained with

Thermography method and (d) with TAS method.

natural frequency of the aluminum specimens, which leads to a greater num-338

ber of load cycles within each 0.5-second observation interval, enhancing the339

stationarity of the temperature signal. Conversely, the temperature signal of340

the polymer specimens shows more non-stationarity within a single 0.5-second341

recording, which can also be observed in the time-domain signal presented in342

Fig. 4.343

5. Crack identification using the TAS method344

The primary objective of the novel TAS method is to identify the spatial345

location of vibration-fatigue cracks at an early stage. Results from four tested346
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Figure 5: Comparison between (—) specimens’ identified natural frequencies with a response

accelerometer and (•) averaged frequency of T̂i,AS, graphs (a) - (d) refer to specimens no. 1 -

no. 4, respectively.

specimens, listed in Tab. 1, are presented in Figs. 6 through 9. Each figure347

shows a decrease in the specimen’s natural frequency alongside a photograph of348

the resulting cracks, with jet color-mapping applied in the crack area to enhance349

the crack’s visibility. IR images processed with the TAS method are displayed350

above the frequency plots, while the Thermography method results are shown351

below. The testing times highlighted in Figures 6-9 were chosen based on crack352

changes detected by the TAS method.353

354

Examining the results for the 3D-printed specimens no. 1 and no. 2 (Figs. 6355

and 7, respectively), it is clear that the TAS method offers significantly im-356

proved crack localization compared to the conventional Thermography method.357

As expected (Sec. 3), cracks appear as areas of locally reduced temperature358

in the TAS images, consistent with thermoelasticity theory (Eq. 7). As the359

crack propagates, these zones of reduced thermoelasticity-induced temperature360

expand accordingly. The final TAS image of specimen no. 1 (Fig. 6 at 1600 s),361

obtained with the TAS method, aligns well with the actual final crack condition.362
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By contrast, the Thermography method provides less detailed results, primarily363

identifying only the crack tips. This limitation in the Thermography method’s364

detection efficacy arises due to heat conduction from the internal stress con-365

centration at the crack tip to the specimen’s surface, as governed by the heat366

diffusion law (Eq. (9)). It should also be noted that a minor printing defect was367

present at x = 3 mm and y = 3.5 mm in the observed area, which could have368

falsely suggested an early crack at 60 seconds of testing.369

370

Figure 6: Crack identification of specimen no. 1 (3D printed in y direction) during vibration-

fatigue testing using the TAS method (upper section) and Thermography method (bottom

section) in reference to the drop of the specimen’s natural frequency and a final crack in the

middle section.

The results for specimen no. 2 are presented in Fig. 7. The TAS method reli-371

ably detects the failure of two individual threads, each 0.2 mm wide, appearing372

after 945 seconds of vibration testing. This failure is minor enough that it does373
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not result in any detectable change in the specimen’s natural frequency. As the374

vibration test continues, the TAS method clearly maps the propagation path of375

all three initial cracks. In contrast, as with specimen no. 1, the Thermography376

method provides significantly less detailed information on crack initiation and377

propagation for specimen no. 2.378

379

Figure 7: Crack identification of specimen no. 2 (3D printed in x direction) during vibration-

fatigue testing using the TAS method (upper section) and Thermography method (bottom

section) in reference to the drop of the specimen’s natural frequency and a final crack in the

middle section.

Additionally, the study included tests on 3D-printed specimens oriented in380

the z-direction (Fig. 2(a)), following the same experimental procedure. Crack381

detection using the TAS method on these specimens was less distinct than for382

those printed in the x- and y-directions, though it still yielded more accurate re-383

sults than the Thermography method. The reduced effectiveness in identifying384
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cracks is likely due to the obscured view of the crack initiation and propagation385

path, which is concealed beneath subsequent filament layers (for further details,386

see [28]).387

388

The initial analysis of the aluminum specimens shown in Figs. 8 and 9 reveals389

a similar decrease in natural frequency for both specimens. In general, the TAS390

method reliably detects the vibration-induced fatigue crack in both cases. A391

closer examination of the natural frequency drop indicates that crack initiation392

is recognized earlier on specimen no. 3 (fine ground with black coating) than on393

specimen no. 4 (water-jet cut with no coating). However, the spatial accuracy of394

crack identification is higher for specimen no. 4 compared to no. 3. In addition395

to specimens no. 3 and no.4, an additional type of aluminum specimen was396

tested with a fine ground surface and no color coating. Crack detection on this397

uncoated specimen was unsuccessful due to high surface reflectivity, which led to398

incorrect measurements from the high-speed IR camera. Therefore, black color399

spraying is recommended for crack detection on reflective surfaces, although400

a slight increase in spatial uncertainty may be expected. It should also be401

noted that uneven paint application can vary paint thickness, causing random402

spots in the processed IR images (see Fig. 8). This issue can be effectively403

mitigated by comparing image changes relative to the initial test image. In404

contrast, the Thermography method failed to detect any cracks in the aluminum405

specimens. This limitation is likely due to the low heat generation and high406

thermal conductivity of aluminum.407

Furthermore, the final crack condition in both specimens consists of multi-408

ple parallel cracks. While the TAS method reliably identifies the presence of409

these cracks, the accuracy in localizing the exact crack paths is reduced in such410

cases. This outcome aligns with expectations from thermoelastic theory, which411

primarily detects areas of reduced stress amplitude – areas that are often found412

between parallel cracks.413
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Figure 8: Crack identification of specimen no. 3 (aluminum with prepared surface) during

vibration-fatigue testing using the TAS method (upper section) and Thermography method

(bottom section) in reference to the drop of the specimen’s natural frequency and a final crack

in the middle section.

It is noteworthy that successful crack detection results were achieved with414

the novel TAS method on both polymer and aluminum specimens using the same415

image processing procedure, without any fine-tuning of the TAS method. Addi-416

tionally, with a larger group of test specimens, the reliability of crack detection417

was consistently confirmed. In each case, a clear overview of the crack location418

was achieved, provided that the reflective effect was sufficiently minimized.419

6. Conclusions420

This study introduces a novel approach for identifying cracks due to vi-421

bration fatigue, utilizing the temperature-amplitude spectrum (TAS). The TAS422

method, based on thermoelastic theory and applied through high-speed IR imag-423
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Figure 9: Crack identification of specimen no. 4 (aluminum with surface from water-jet cut-

ting) during vibration-fatigue testing using the TAS method (upper section) and Thermog-

raphy method (bottom section) in reference to the drop of the specimen’s natural frequency

and a final crack in the middle section.

ing, enables the real-time detection of crack initiation and progression within424

the specimen’s fatigue zone without disrupting ongoing vibration tests. The425

method’s effectiveness was demonstrated across multiple specimens with natu-426

ral frequencies around 210 Hz and 510 Hz, highlighting its versatility in varying427

frequency conditions.428

The established TAS method provides several distinct advantages. As a full-429

field, non-contact approach, it achieves high spatial resolution (320x256 pixels)430

and can detect early-stage cracks as small as 0.2 mm, even before any shift431

in natural frequency occurs. This capability allows for precise crack localiza-432

tion and provides detailed insights into both crack propagation and the critical433

frequency ranges involved in excitation and response, which are essential for434
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assessing structural integrity under dynamic loading.435

In terms of practical application, the TAS method proves as very adaptable.436

It performs reliably on both polymer and metal specimens without requiring437

adjustments of image processing procedures. The setup demands only a single438

measurement device, with minimal specimen surface preparation, making the439

method accessible for routine use. Additionally, its computational efficiency440

supports real-time monitoring during vibration-fatigue testing, which is crucial441

for early intervention and structural health monitoring.442

Nevertheless, the TAS method has two primary limitations. First, reflective443

surfaces require a black coating to reduce interference in IR imaging. Second,444

the method’s accuracy depends on maintaining an unobstructed view of the445

crack to capture clear temperature changes associated with crack initiation and446

propagation. Despite these limitations, the TAS method represents a signifi-447

cant advancement in non-destructive testing for vibration-fatigue assessment,448

combining practical ease with high sensitivity to early-stage damage.449
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